Chapter 5.1

Introduction to Normal Distribution and the Standard Normal Distribution

What is a Normal Distribution & a Normal Curve?

- we did disorate in variable it. -A normal distribution is a probability for a continuous random variable, x.
- A normal curve is the graph of a normal distribution.

KEY FEATURES OF NORMAL DISTRIBUTION

- 1. Mean, Median, and Mode are equal.
- 2. The curve is bell-shaped and symmetrical about the mean.
- 3. The total area under the curve = 1 (or 100%).
- 4. The curve approaches, but never touches the x-axis.
- 5. The graph curves downward within one standard deviation of the mean and curves upward outside one standard deviation of the mean. These points are called "inflection points."

A normal curve can have any mean and any positive standard deviation.

 $\mu = 3.5$

 $\sigma = 1.5$

 $\mu = 3.5$ $\mu = 1.5$ $\sigma = 0.7$ $\sigma = 0.7$

Recall the **mean** is a measure of positive: Curves A and B have the same mean.

Recall the standard deviation is a measure of spread: Curve A has the largest standard deviation while B and C have the same standard deviation.

Example 1:

Which curve has the greater mean? \triangle

Which curve has the greater standard deviation?

Sketches of what a normal curve CAN NOT look like:

cosses over x-axis

REVIEW CONCEPT

In Chapter 2, we used the **EMPIRICAL RULE** to determine probabilities under normal curves and we reviewed this yesterday in class and for homework.

We also discussed the "STANDARD SCORE" OR "Z-SCORE." A z-score tells us "how many standard deviations" a raw score, x, is away from the mean, μ .

$$z = \frac{x - \mu}{\sigma}$$

Example 2: The birth weight of newborns is normally distributed with a mean of 3300 grams and a standard deviation of 600 grams.

a) What is the Z-score for a newborn weight of x = 3900g?

$$Z = \frac{3900 - 3300}{600} = \frac{600}{600} = 1$$

b) What is the Z-score for a newborn weight of x = 2300g?

$$\frac{2300-3300}{600} = -1.67$$

A "Standard Normal Distribution" is a normal distribution with a mean of 0 and a standard deviation of 1. The total area under the curve is 1.

If we are dealing with values that have integer Z-scores (-2, -1, 0, 1 etc), we can still use the empirical rule to estimate probabilities.

If we are dealing with ANY Z-score (-2, 0, 1, 1.35, -0.78, etc.) we can use a "Standard Normal Distribution Table."

Standard normal distribution

• A normal distribution with a mean of 0 and a standard deviation of 1.

• Any x-value can be transformed into a z-score by using the formula

$$z = \frac{\text{Value - Mean}}{\text{Standard deviation}} = \frac{x - \mu}{\sigma}$$

STANDARD NORMAL DISTRIBUTION TABLE:

The table entry for z is the area to the left of z.

Example: Find the area left of
$$z = -2.94$$

The table entry for z is the area to the left of z.

Example: Find the area left
of z = 0.37
0.6443

Areas of a Standard Normal Distribution

Table represents area under the curve of to the left of the Z-score.

(-) Y-	L16 A		h = 1 =6		0.00	150811	RA SHOW	DIMENIC		100
(a) 1a	.00	.01	.02	.03	(.04	.05	.06	.07	.08	.09
3.4	0003	-0003	0003	0003	.0003	.0003	.0003	.0003	,0003	,0002
-3.3	0005	.0005	,0005	.0004	.0004	.0004	.0004	0004	.0004	(00)
3 2	.0007	0007	.0005	00006	.0006	2006	.0006	.0005	.0005	000
=3.1	.0010	0009	.0009	0009	.0008/	0008	.0008	8000.	,0007	.000
-30	.0013	.0013	,0013	0012	0012	.0011	.0011	.0011	-0010	0001
-2.9	.0019	.0018	.0018	.0017	.0016	0.0016	.0015	.0015	.0014	.001
-2.8	.0026	.0025	.0024	.0023	.0023	.0022	.0021	,0021	.0020	.001
-2.7	.0035	.0034	.0033	.0032	.0031	.0030	.0029	.0028	.0027	.002
-2.6	.0047	.0045	.0044	.0043	.0041	.0040	.0039	.0038	,0037	.003
-2.5	.0062	.0060	.0059	.0057	.0055	.0054	.0052	.0051	.0049	.004
-2.4	.0082	.0080	.0073	,0075	,0073	.0071	0069	.0068	.0066	900
-2.3	.0107	.0104	.0102	.0099	.0096	.0094	.do91	.0059	,0087	.008

Areas of a Standard Normal Distribution continued

Z	.00	.01	.02	.03	.04	.05	.06	(.07)	.08	.09
0.0	,5000	.5040	:5080	5120	5160	.5199	.5239	.5279	.5319	.5359
0.1	.5398	5438	.5478	5517	5557	.5596	.5636	.5675	5714	5753
0.2	5793	5832	.5871	5910	.5948	,5987	.6026	.6064	.6103	.6141
(0.3)	.6179	6217	.6255	6293	.6331	6368	.6406	(6443)	6480	.6517
0.4	.6554	.6591	.6628	.6664	.6700	.6736	6772	6808	.6844	.6879
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
1.0	8413	.8438	_8451	.8485	8508	.8531	.8554	.8577	.8599	.8621
1.1	8643	.8665	.8686	,8708	.8729	.8749	.8770	.8790	.8810	.8830
9 144	~ ~ · ~	0000	2202		20-7	0011	8000	4440	~~~	001-

BIG IDEA IN THIS CHAPTER:

GOAL: Estimate probabilities of values of x that are part of a normal distribution.

PROCESS:

*Convert x-values (raw scores) to standard scores (Z-scores).

*Use the standard normal distribution table to look up

areas. Areas under the normal curve correspond to probabilities!

HOW TO USE THE TABLE TO FIND PROBABILITIES:

FIRST: Sketch the curve and shade the appropriate areas.

SECOND: Looking for the area on the ...

LEFT SIDE:

Look up the value that corresponds to z in the table. The is the area to the left of z.

this

RIGHT SIDE:

Look up the value that corresponds to z in the table. This is the area to the left of z.

Subtract the area to left from 1.

1 - (area to the left) = area to the right.

BETWEEN TWO VALUES

Find the area left of both scores. Subtract the smaller area from the larger area.

(larger area) - (smaller area) = (middle area)

Find the area under the standard normal curve to the left of z = -0.99.

From the Standard Normal Table, the area is equal to 0.1611.

Find the area under the standard normal curve to the right of z = 1.06.

From the Standard Normal Table, the area is equal to 0.1446.

Find the area under the standard normal curve between z = -1.5 and z = 1.25.

From the Standard Normal Table, the area is equal to 0.8276.

Example 3: Find the area of the indicated region under the standard normal curve. Make a sketch to clearly show the area under the curve that you are finding.

a) to the left of z = 1.46

c) to the right of z = -0.45

70.6736

e) between z = -1.43 and z = 2.03

0.9788-0.0764=0.9024

b) to the left of z = -2.00

d) to the right of z = 1.90

f) between z = 0 and z = 1.79

Because the normal distribution is a continuous probability distribution, the area under the standard normal curve to the left of a z-score gives the probability that z is less than the z-score. For example, the area to the left of z = -0.99 is 0.1611. So, P(z < -0.99) = 0.1611. So from Example 3,

a)
$$P(z<1.46) = 0.9279$$

c)
$$P(z > -0.45) = 0.6736$$

e)
$$P(-1.43 < z < 2.03) = 0.9024$$

b)
$$P(z < -2.00) = 0.0228$$

d)
$$P(z=1.90) = 0.0287$$

f)
$$P(0 < z < 1.79) = 0.4633$$